
* Corresponding author: Kodamasimham Krishna

Copyright © 2024 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0.

Enhancing software engineering practices with generative AI: A framework for
automated code synthesis and refactoring

Kodamasimham Krishna *, Dheerender Thakur and Harika Sree Meka

Independent Researcher, USA.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

Publication history: Received on 17 August 2024; revised on 26 September 2024; accepted on 29 September 2024

Article DOI: https://doi.org/10.30574/wjaets.2024.13.1.0463

Abstract

This paper is based on how software development has been revolutionized using AI in automation, mainly dealing with
code synthesis and rewrite frameworks. While there is no focused definition for software development with AI
technologies, their application in development processes is unlikely to remain marginal as they mature and provide
higher productivity, improved code quality, and enhanced ability for automating repetitive tasks in development.
Automating coding means that predefined tools can bring code suggestions, show and apply refactoring features, and
enforce coding standards so developers can devote their efforts to other aspects of software development. The following
paper describes the practical systems that should be adopted before AI can be incorporated into software development.
It also covers essential factors such as ethical, security, and quality aspects regarding the proper use of artificial
intelligence. Lastly, the paper focuses on the direction and innovations in the future, including domain-specific AI
models, better explainability of the AI solutions, and collaborative tools that can work according to improved and
modified development practices. The framework is intended to balance machine learning with human experience to
help developers utilize the benefits that an AI-Based Software Development Framework can render.

Keywords: AI-driven automation; Code quality; Ethical considerations; Machine learning; Software development

1. Introduction

Software engineering has always been an area where art meets 'science.' Application developers are expected to
conceive, implement, and fine-tune application code marked by functionality and performance characteristics. With the
increase of the current scale and the enhancement of the software systems, the pressures on the developers have also
increased. The problem is that even though older and more classical practices might be effective, they still need to work
entirely in today's fast-paced software development. Activities include synthesis, where developers write code from the
ground up in light of particular specifications, and refactoring, a process of improving existing code or restructuring.
The Process is usually exhaustive and tends to be marred by errors inherent in any human activity. These tasks provide
enough quality for the developed software; however, they become bottlenecks of the development process and result
in negative consequences such as inefficiency and technical debt. This raises an important question: how can we fix and
improve the rates of such fundamental software engineering activities without affecting their accuracy?

In recent years, the answer has gradually surfaced as generative artificial intelligence (AI). By applying Generative AI
along with NLP and Machine Learning capabilities, it has been witnessed that AI can understand simple function
signatory or even high-level intent to write a program and generate code accordingly. Some pristine examples include
GitHub's Copilot and OpenAI's Codex, which has already stirred things up in the software engineering circles by
suggesting the piece of code that comes next and even autocompletion of code depending on the context. These
intelligent tools enable coders to practice more creativity and productivity within a shorter time frame than was once

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://www.wjaets.com/
https://doi.org/10.30574/wjaets.2024.13.1.0463
https://crossmark.crossref.org/dialog/?doi=10.30574/wjaets.2024.13.1.0463&domain=pdf

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

673

possible- but also enable developers to concentrate on the more advanced and essential levels of coding while allowing
automation to handle the regular and tedious tasks. Nevertheless, the opportunities for generative AI are evident; there
are both critical issues and some gaps in modern generative AI when it comes to code synthesis and refactoring.

Currently, somewhat limited attention is paid to the use of generative AI in the software engineering lifecycle such that
code generation and refactoring are performed without compromising the quality and extensibility of the software.
Despite this, current AI tools allow for simple, narrow tasks to be executed effectively, including writing code; however,
when it comes to more complex software development issues or even those that require a deeper contextual
understanding and taking into consideration long-term code maintainability, AI's stay behind. For instance, AI may be
good at generating the boilerplate of code or presenting suggestions for small codes, but to make sure that the code it
generates blends well into larger multi-module systems is more accessible said than done. Also, they do not perform
well in technical debt handling, especially when working with large and dynamic code reservoirs that require rewiring
for future gains. The current approaches to AI solutions need to allow for the identification and addressing of some of
the issues at the architectural level, namely underlying system designs and algorithms that may severely affect the
scalability and performance of program systems when implemented.

About the successive points that have contributed to the definition of software engineering, a second gap is that of the
human supervision still necessary for using AI in development. Despite all the advantages for developers nowadays
implementing AI code generation, the code generated by AI needs to be reviewed, edited, and integrated into the current
system. Additionally, it is also pointed out that AI does help with refactoring. Still, it does not have a general knowledge
of the overall system as the developers do. Such knowledge is often necessary to make sensible decisions on how to
prepare code for the system's future growth. The absence of sophisticated refactoring technologies that endow current
generative AI options with the capacity to make these decisions demonstrates the need for current generative AI models
in solving these annual software development issues.

In addition, incorporating AI brings about new issues with security and reliability in development lifecycles. Code
created by the AI while being functional can have vigilance issues leading to the creation of security vulnerabilities, or
it may not follow some of the best practices. This is because artificial intelligence must be closely supervised in large
systems where even minor vulnerabilities may generate a series of consequences. That is why the problem is still
relevant, and the industry has not yet developed broad solutions that integrate AI into software development and ensure
the generated and refactored code is secure, scalable, and conforms to ideal coding standards.

Based on these issues, this paper recommends a framework that improves software engineering methodologies by
integrating generative AI technology for auto-generating codes and intelligent code transformation. As the present
paper suggests, the proposed framework enhances AI's capacity to comprehend the software's architecture. Improving
code quality and making it more maintainable with less human interference is possible. Using the ideas of modern
advanced models, feedback, and integration into the development environments, this idea can bring several benefits to
the new software engineering approach to overcome the difficulties of modern software systems.

2. Background and context

Therefore, It is imperative to look at the conventional methodologies, which have been the bedrock of software
development, to fully grasp the impact that interaction with an automated AI system holds for the development
discipline. Conventional software development involves several vital stages: requirements analysis, design,
implementation, testing, and maintenance. Each stage is time-consuming and involves close cooperation between the
team members to meet end-users' requirements and ensure the software works properly. Though these processes are
highly formalized, sometimes intent human error, repetitive coding work, and problems with code quality
pervasiveness emerge. Manual code synthesis refers to a process in which developers type codes as per requirement
specifications one line at a time, and such a process is often slow and error-prone. Like in the case of automatic
refactoring, restructuring the source code to enhance its readability, speed of execution, and ease of maintenance is
complex and demands profound knowledge in the programming and usage of the code.

Over the past few years, integrated AI technologies have emerged in software development to solve these challenges.
Language processing, machine learning, and deep learning are among the AI technologies extensively discussed in SDLC
process automation. For example, machine learning can learn from big code data to establish a pattern and write new
code. At the same time, NLP can be employed to read and understand natural language descriptions of required
functionality and translate the same into code. Such technologies have culminated into various tools and frameworks
that enable developers to enhance and simplify coding practices using artificial intelligence.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

674

It is possible to distinguish several significant turning points in the development of AI as a branch of software
engineering. The first approaches were made in 1991 with attempts to develop rule-based systems that assist in simple
coding. However, these systems could have been more sophisticated and could only offer essential support. The actual
advancement came with the emergence of machine learning and deep learning techniques, which enabled systems to
learn from vast quantities of data and draw well-reasoned conclusions. Recent products that use deep learning models
to predict code completions and then type out snippets of code, namely the GitHub Copilot and TabNine, are rapidly
becoming very popular among developers. These tools shorten the coding process and prevent mistakes, but they also
assist the developer by offering suggestions based on context compliant with the industry standards.

 Still, specific problems arise from the attempts to launch AI into the software development process. Another is to
prevent the code developed using AI from being less reliable than it should be for professional software development.
Even though the models are highly advanced, human employees should still be wary of them since they can generate
syntax-correct but logically incorrect code or even inject security flaws. Additionally, there is the challenge of domain
specificity: When the models have been trained on general data sets, they are likely to fail when it comes to specific
domains of software development where there is a need to understand specific technologies or ways of implementation
that are peculiar to the particular area in consideration.

Furthermore, the main issue of incorporating AI-based tools into conventional software development processes is the
strategies employed. Developers must rely on these tools to implement their implementation, which means that AI tools
must explain why they recommend specific steps. This is important in creating trust among the developers since they
need to know how the suggestions from the AI system are arrived at so that they can, in turn, determine the suitability
of those suggestions for their task.

In the same way, with the development of artificial intelligence in the future, the usage of AI in software development
will be maximized, and more exclusive and enhanced methods will be provided to software developers. Yet, to unlock
the full potential of AI-based automation, it is critical to establish effective best practices that will frame the integration
of the former into an SDLC and, in effect, strengthen the synergy with human expertise rather than legitimize it. Only if
the traditional problems of software development and the possibilities of AI technologies are paid attention to will the
idea of automation by applying AI be appreciated and the steps to implement it be found.

Figure 1 Comparison between automated and manual refactoring in terms of code quality improvement over time

3. AI-driven code synthesis

Code synthesis, the process of writing code with the help of specified requirements or specifications, is one of the
primary constituents of software developments to which AI contributes more and more. The idea of code synthesis was

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

675

that developers wrote the code by themselves with the help of their interpretation of the specifications. The process
consumes a lot of time and is ridden with mistakes. Code synthesis with the help of AI is another approach that tries to
separate writing descriptions of the code and make actual code automatically using machine learning algorithms
capable of understanding given definitions and finding templates that should be used. The current methodology is
anticipated to enhance productivity further and alleviate the cognitive burden associated with incentives that
concentrate developers on the process's more creative and challenging aspects, specifically software design.

 Automatically generated code employs different machine learning methods to generate code. One of their most
powerful is based on deep learning models, such as transformers and recurrent neural networks (RNNs), which are
trained by the large code corpus that teaches the model's syntax, semantics, and coding standards. These models can
train a prediction of the following line of code or complete functions given a partially completed code or a description
in natural language. For example, a developer may describe a function they want to be implemented, and the AI system
writes the code, considering the programming language, libraries, and frameworks being used.

 Besides deep learning, reinforcement learning has become one of the most influential techniques for code synthesis. In
the case of reinforcement learning, the models are trained for the code generation process, where they get a reward for
the correct and quality code. This approach helps the model make a better output than before because it adjusts itself
with the help of server logs and the mistakes that occur in the model. With the help of deep learning in parallel with
reinforcement learning, AI systems can generate syntactically and semantically correct code and optimize its
performance, legibility, and maintainability.

This AI code synthesis uses a range from one sector to the other. One of the most tangible is that of particular
applications helpful in automating the generation of what can be called 'canned' code. Accepted code, whereby the latter
represents a set of ideal source code, repetitive sections, usually with slight variation between repetitions, could be
more exciting and time-consuming for developers to write and maintain. AI can generate This code automatically, thus
saving time on the need to write code, which is quite repetitive for developers. Moreover, with the help of AI code
generators, creating several prototypes becomes possible, which means faster development of the best option.

 As discussed below, AI-driven code synthesis has advantages, disadvantages, and limitations. One is the ability to
generate quality code free from security vulnerabilities. Even though the AI models can produce syntactically correct
code, they are several times far from producing best practice-compliant code or containing no security flaws. This issue
occurs mainly because designing AI models requires more context and knowledge of the task and environment than the
developers do. For instance, the model trained on a software code for average software may not write quality code for
complex software such as those used in embedded systems and high-frequency trading platforms due to complexities
inherent in the latter.

 Another challenge is in the appropriateness of deploying the AI-driven code synthesis tools and the interpretability of
the synthesized code. To become a relevant feature in developers' toolchains, they need to be able to rely on them.
However, the tendency of many AI models to be 'black boxes' makes it difficult for people to understand how the code
is being generated and why those specific suggestions can significantly decrease trust and, subsequently, the tool's
usage. To this end, research is being conducted to create systems that generate machine code together with other
supporting information on how the code should be written and why the output for the code was generated and to enable
the programmer to decide whether to accept or reject the generated code.

However, incorporating AI's code synthesis in the current development interfaces must be done carefully in the correct
implementation plans. Based on this, technology tools must not be an addition that disturbs work processes but rather
an improvement that can integrate with common IDEs and version control systems. Further, some costs are related to
institutionalizing new technologies and AI-driven tools every organization must implement. These require resources to
overcome this hurdle and provide adequate training to the developers.

Therefore, code synthesis based on artificial intelligence is a significant innovation in the sphere of programming that
contributes to the automation of the work of programmers, boosting their performance and decreasing the possibility
of errors. These tools include AI writing software that employs deep learning, reinforcement learning, and numerous
other forms of artificial intelligence to assist in translating natural language into code that conforms to best practices
and different stipulated standards. However, to attain those benefits in the application of AI in code synthesis, it is
imperative to consider the issues related to quality assurance, security, the disclosure of the synthesis process, and their
integration. Algorithms and related technologies are bound to become more pervasive in the software development
lifecycle; the developers will be able to concentrate on unconventional thinking.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

676

4. AI-driven refactoring

Refactoring is defined as the act of restructuring already written code in such a way that enhances its
comprehensiveness, efficiency, and flexibility. At t, the same time, the called external procedure stays the same. It is an
essential process in computer programming and software engineering, as it enables the teams to control technical debt
and ensure that code repositories are clean and optimized as much as possible. Conventionally, refactoring is wrought
with manual operations, which consumes a lot of time, and the intervention of an expert professional is needed to
determine sections that can undergo improvements and consider the safety margins of the operations. However,
refactoring is currently emphasized as one of the critical processes that can benefit from the advanced solution of AI
refactoring. It is possible to detect code smells and recommend and perform optimizations and refactoring using
supervised and unsupervised machine learning and data analysis techniques while preserving the functional
correctness of the source code.

 AI-based refactoring is done by scanning the structures and trying to comprehend which may be appropriate for
refactoring. Attending to generality, different heuristics can be learned by the models, such as detecting duplicated code,
large classes, long methods, and other symptoms of innate poor software quality, known as 'code smells.' Learnability:
such models can also incorporate knowledge, such as language-specific idioms, framework recommendations, and
overall software architectures. It also allows AI to propose specific refactoring actions most relevant to current best
practices.

It is convenient to perform automated code transformations, making the AI refactoring tool one of the most powerful.
After potential improvements are found, AI can apply the refactoring to the code if left alone. For instance, an AI tool
may automatically refactor source code by cutting an extensive method into more manageable functions and providing
descriptive names to variables. Alternatively, the AI may simplify the arrangement of conditionals. They are integrated
at the source code level as this is the most efficient way, which takes much less effort from developers and does not
consume as much time as when a human is involved. Also, using AI-based refactoring tools, there will always be more
places to find for refactoring new or updated software for better optimization as development goes on.

The proposed refactoring process underlined above has several advantages when based on AI. First, it allows for
keeping the code quality high, constantly looking for imperfections that could be potential problems. This approach
minimizes technical debt, which could accrue with time as codebases expand and may slow development, as much effort
is spent on fixing previous technical debts. AI tools also help automate the tedious work of refactoring tasks, where
developers can get bored doing repetitive code maintenance work all the time and move ahead with more creative and
crucial jobs related to software development. Also, it is essential to note that the optimization of the code paths shall be
done automatically from the refactoring tools, which can benefit the software by reducing its resource utilization and
response time, hence improving the users' experience.

However, it is worth noticing that implementing the idea of refactoring based on artificial intelligence also poses several
potential problems. The first concern is that automated refactoring should avoid introducing faults and other side
effects. Each AI model can offer intelligent suggestions about specific patterns and generally accepted conventions. Still,
it will not have the reasons for a particular application or a broader impact of some modifications. For instance,
optimizing code by refactoring, such as improving a code's readability, could impair performance or alter the behavior
of related components. Proper testing and validation must often be carried out to prevent potentially negative impacts
of refactoring on a software’s functionality and reliability from occurring.

Another issue is the ability to fit AI-driven refactoring tools into existing development processes as the last point. These
tools must be easily incorporated into well-used IDEs and version control software to be maximally useful. It must offer
interactive panels where the developers can scrutinize and endorse the refactoring suggestions efficiently to guarantee
that all the alterations are in harmony with the team's coding specifications and the project's needs. Moreover, one
should see how the particular AI models make their refactoring choices, and it has to become reliable as developers rely
on those tools. Expl AI techniques can assist by giving the designer an explanation as to why a particular refactoring
action is suggested, as well as how the action should be implemented.

AI-driven refactoring represents a significant advancement in the software development lifecycle, offering the potential
to automate routine maintenance tasks, improve code quality, and reduce technical debt. By leveraging machine
learning algorithms and data-driven techniques, these tools can detect code smells, suggest optimizations, and perform
automated refactoring, all while preserving the integrity of the software. However, to ultimately capitalize on the
advantages of AI-driven refactoring, it is essential to address the obstacles of ensuring functional correctness, managing
integration into existing workflows, and fostering trust among developers.AI technologies will probably become more

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

677

significant in the maintenance and enhancement of codebases, thereby allowing teams to deliver high-quality software
more efficiently and effectively.

5. A framework for AI-driven code synthesis and refactoring

Having integrated contemplation of the AI applications in code synthesis and code refactoring is crucial to approaching
these technologies' potential. When the market is filled with innovative and intelligent tools, such a framework helps to
think within a modern corporate framework, creating a structure for implementing AI techniques together with
traditional practices, preventing deterioration of code quality, and striving for permanent improvement of efficiency
based on intelligent solutions. The associated framework should be constructed to cater to development environments
of different complexities and, simultaneously, can be easily updated by new AI technologies and practices.

The first part of this framework is data collection and data cleaning. Regarding synthesis and refactoring of code, it is
vital to recognize that improvements in AI-based techniques are primarily determined by the quality and variety of the
data used to train correlating models. This stage includes collecting a vast and diverse set of source code, which covers
diverse programming languages and different stylistic approaches and belongs to other domains. This way, the data has
to be selected to contain not just quality code that is easy to read and adherent to best practices but also examples of
the anti-patterns and standard errors. The data should also be categorized as much detail as possible to identify concrete
coding practices, architectural patterns, and refactoring. Cleaning involves removing irrelevant data from the data set,
normalizing, and transforming the data into the desired format and scale. At the same time, annotating makes the data
easily understandable by the machine learning model. This step is crucial because the quality of the input data guides
the process of AI models for code synthesis and refactoring.

The second consists of model training and admissions decision evaluation. Once the data is prepared, the next step is to
build machine learning models to execute predetermined code synthesis and refactoring tasks. These models can be
funded with different AI techniques like deep learning techniques, reinforcement learning techniques, or a hybrid
model. But, when the models are trained, they can find probable patterns in the data, estimate the following line of code,
suggest an improved version, and detect likely refactoring opportunities. It is essential in any model development where
model evaluation is done periodically to check if the models developed are good and can generalize well with other
unseen data. Here, the test datasets are utilized to test the models, and factors like accuracy, precision, recall, and F1-
score are used to determine the models' efficiency. It should also be mentioned that to enhance the algorithm's
performance, it is possible to implement quantitative and qualitative evaluations, including code reviews by
professionals, to evaluate the applicability and quality of the generated code and refactoring advice.

Deployment and integration make up the final concept of the framework. AI models must be deployed in real
development contexts when the training and evaluation processes are completed. This step includes incorporating the
AI tools in the commonly used IDEs and other related tools, such as the version control systems and CI/CD processes.
Thus, the objective is to provide developers with AI-generated recommendations and automate code refactoring as
integrated services within developers' current workflows. To this end, the tools must offer easily usable interfaces and
provide or suggest simple developer recommendations. Further, the tools should incorporate configurable options to
enable teams to set the extent to which the tools are automated, as well as the type of suggestions required.

This means that the process certainly has a scientific basis, and the last element of the framework is the feedback loop
and continuous improvement. Tools that utilize AI to perform code synthesis and refactoring must not be fixed; they
have to be updated over time upon receipt of feedback from the developers and changes in coding conventions. This, in
turn, demands the existence of a sound feedback mechanism through which the developers can give their feedback on
the suggestions given by the AI tools and the automated modifications made to it. Users can provide direct input by
reviewing codes and evaluating the changes to the code and their impact on the software's performance and simplicity
of maintenance. This information can then be used to retrain the models and make the subsequent models even finer to
serve the purpose and intention for which the models are designed on a long-term basis. Furthermore, it provides a way
to find out any problems or constraints in the AI models to enable the developers to fix them and enhance the quality
and accuracy of the tools.

The suggestions, when used to support this or a similar kind of framework, must be well planned out and executed. It
signifies that organizations must focus on choosing the proper AI techniques and models depending on their
requirements and codebases. Another factor that should be considered is the need for training and support so that the
developers are at ease when it comes to the new tools and are in a position to integrate the new AI into their
development cycles. In addition, organizations should provide guidelines and templates that can be adopted when one
wants to use these tools since the use of these tools should be balanced with a human touch when evaluating people.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

678

6. Ethical, security, and quality considerations

Incorporation of AI automation in software development is an interesting idea that Provides several ethical, security,
and quality concerns that should be considered when applying this technology. On the one hand, the implementation of
AI tools greatly benefits production in terms of improvement of efficiency and productivity; on the other hand, it raises
potential risks and challenges which might affect the quality of the targets and the purity of the processes within
software development. There is, however, a need to address these concerns if authors are to derive the total impact of
synthetically synthesizing all forms of codes Ref. , [15].

Some of the most relevant ethical issues that relate to the use of AI-based tools in software development include the
following: The first is bias and opacity. Training an AI model with biased data will result in bias exhibited at the output
level, thus becoming unfair or discriminating in software development. For instance, if the training data only provide
examples of coding styles or practices of a particular culture or gender, the AI will tend to favor such practices to the
detriment of the others, thus having potential bias effects. To address this risk, though, the data used for training AI
models must span across many types of code and styles and various domains and practices. Further, AI models should
be mimicked in nature and must be able to explain why they recommend a particular change. This is important and
useful to the developers in getting the rationale behind the implemented AI functions and ways in which the code
refactoring is being suggested so that appropriate action can be taken.

Security is another possible problem when employing AI tools in software development applications. Suppose the given
model can write code or write code in such a way that it may even automatically refactor the code. In that case, the given
model might be introducing new vulnerabilities if the model does not understand what it is doing. For instance, an
intelligent tool may offer changes in the code that create security vulnerabilities, poor management, or improper input
information storage. Regarding such issues, it is crucial to ensure that security testing and validation issues are
incorporated into the application of AI in the development cycles. This is useful in preventative measures where possible
risks are detected using static and dynamic analysis tools; there is a security audit of all the code that has been created
by the AI from time to time. It is useful to review all the developers' changes before committing them to the base.

Quality is another critical issue when adopting the code synthesis and refactoring technology that AI powers. While
using these tools is very useful in increasing the efficiency of work and delegating monotonous tasks to the tools, it must
be noted that these tools are only sometimes fully efficient or may generate the code that needs to be properly formatted
as per professional coding standards. It means that using AI to write code might result in syntactically correct code,
which in no way can offer the standards that an experienced programmer will consider optimum in terms of code
readability, maintainability, and optimizations. Some of the ways to extend the proposed approaches and raise the
quality of code generated by machine learning tools are testing and code review. These include the unit tests used to
test what the coding produces, integration tests used to test the blocks of codes joined together, and lastly, the pe, the
performance t, tests used to test the rate at which the code works. In addition, getting feedback from developers from
time to time also helps improve the AI models to provide better quality.

Other questions should be mentioned and solved when using AI in software development, such as legal and regulatory
ones. This involves consideration of the country's rules in the inscription of personal data, such as the GDPR laws of the
European Union. The code base used in developing the AI models contains personal or sensitive information. It should
be used with a lot of precautions in order not to offend privacy policies. More specifically, there should be clear
regulations and processes of how AI should be employed to achieve the above legal purposes so that all the created tools
employ AI responsively and within the legal confines.

Therefore, it is possible to conclude that new paradigms for CS, such as code refactoring and AI-based ones, are effective
in SW development. Still, they must consider the ethical, security, and quality issues caused by their application. That
means creating representative training data and investing in enough security and quality control mechanisms and
guidelines; the AI must explain and be transparent, supporting the ethical frameworks of AI and people's continual
engagement to learn and work together: organizations are capable of doing the right thing and getting the most from
the possibilities of AI. These considerations will become important in the future of SW developments since the
mentioned tendencies correlate with future AI automation's impact on productivity and creativity and on creating the
most ethical, safe, and high-quality world.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

679

7. Future directions and innovations

Several innovations and trends expected to take shape soon will define the future of software development automation
using artificial intelligence. Therefore, the mandate of AI technologies to continue growing will bring new ways of
increasing the functionality of AI-powered tools, thereby making them more robust, versatile, and universal to the SDLC.

One potential area of expansion is the developmental progression of these models to incorporate mechanisms of greater
sophistication as applied to the actualization of software. Modern AI-based code synthesis and refactoring tools are very
efficient in handling routine tasks in the analysis and organization of code in terms of patterns for reusing, etc. However,
a lot more can be done. Subsequent AI implementations may be achieved with stronger cognition of the structural layout
of dependable software systems to make more informed architectural decisions concerning software elements,
dependencies, and interactions. This would allow some of the more intricate refactoring activities to be aided by the
employment of AI on different levels, for example, dealing with monolithic applications, converting them to
microservices, or optimizing the code for parallelism in distributed systems.

 One more emerging area for the application of AI is the combination of AI with expertise in a specific field and industry.
As general-purpose repositories predetermine the current models, future developments could concentrate on bringing
in approaches with prior knowledge in particular fields, like finance, medicine, and aerospace. Despite this, integrating
domain-specific conventions and standards into AI tools could enhance the tools' performance and relevance in helping
to generate and optimize code with regard to various industry-specific parameters. Such an approach would extend the
role of applying AI tools to more specific software development environments, in which the context of an application is
a vital factor to consider while developing the code.

Together with the domain-specific knowledge, the factors that are expected to underlie future AI-based instruments
include explainability and transparency. One of the current issues about AI models, especially the deep learning models,
is that the models make suggestions and changes. Still, it takes a lot of work for developers to know why a specific
suggestion has been made. Technological advancements in explainable AI (XAI) attempt to move in this direction by
proposing ways and means to furnish humans with understandable reasons for AI-based output. By increasing
transparency in the functioning of AI, developers learn to trust AI tools and work in conjunction with them much more
often, thus providing robust and accepted results.

Moreover, it is expected that directions in the development of AI automation will push the boundaries of continuous
learning and optimization. Present-day AI models usually need to be retrained on some schedules to update new data
and reflect the alterations in coding norms. Future models could use online learning, meaning that the models could
learn from newer code changes, developer feedback, and, generally, newer software development practices. This
capability would help AI-driven tools be aware of the trends in development and offer the current state-of-the-art
suggestions for the synthesis of code as well as code restructuring.

8. Conclusion

The emergence of artificial intelligence in software development is paving the way for new approaches capable of
improving software development in terms of speed, quality, and productivity using new code synthesis and
transformation methods. These tools incorporate machine learning models and data science techniques to do mundane
work, detect the presence of smell indicators, and improve the code structure so that developers can work on more
challenging and innovative aspects of their projects. AI technology will progress further and become an active part of
software development practices as it can write more accurate and contextually relevant codes and refactor the existing
codes.

 However, there are several essential issues to consider when implementing artificial intelligence for automation at total
capacity. Ethical considerations, including bias and explainability, need to be addressed to have proper ethical AI
outcomes. Potential risks include introducing security threats by implementing this system, and security considerations,
in this case, have to be handled with care through proper validation and testing of the system. Further, the constant
focus is placed on maintaining basic code quality standards to ensure that both AI-written and refactored code is
acceptable and safe in the eyes of developers and end-users.

 As such, the future of AI in software development shall continue to be more innovative and progressing, creating better
AI algorithms that work with the various substantial structures involved in software, including the incorporation of
domain knowledge, better explainable AI, and better teamwork and collaboration tools, especially for distributed teams.

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

680

Updating and usefulness will also help maintain a continuous understanding of new coding approaches and the new
technologies in the market.

Compliance with ethical standards

Disclosure of conflict of interest

No conflict of interest to be disclosed.

References

[1] Rahman, M. A. (2024). Optimization of Design Parameters for Improved Buoy Reliability in Wave Energy
Converter Systems. Journal of Engineering Research and Reports, 26(7), 334-346.

[2] Rahman, M. A., Uddin, M. M., & Kabir, L. (2024). Experimental Investigation of Void Coalescence in XTral-728
Plate Containing Three-Void Cluster. European Journal of Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C.
(2018). A survey of machine learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4), 1-37.

[3] Chen, T., Liu, Z., Li, X., & Shi, Y. (2019). Automated code refactoring for ensuring security in blockchain smart
contracts. Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE '19), 53-64.

[4] Fregnan, E., Zeni, M., Scalabrino, S., Beller, M., & Bacchelli, A. (2020). Automated code review: A systematic
literature review. IEEE Transactions on Software Engineering, 48(4), 1-22.

[5] Lata, R., Akshatha, A. R., & Garg, S. (2020). The impact of artificial intelligence on software development processes.
Journal of Systems and Software, 169, 110710.

[6] Li, Y., Guo, L., Jin, Z., & Wang, X. (2021). AI-based code completion: A review of challenges and solutions. IEEE
Access, 9, 143299-143313.

[7] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2016). On the "naturalness" of buggy
code. Proceedings of the 38th International Conference on Software Engineering (ICSE '16), 428-439.

[8] Tufano, M., Watson, C., Bavota, G., Pantiuchina, J., Poshyvanyk, D., & Oliveto, R. (2019). An empirical investigation
into the nature of automated code changes. Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE '19), 1-12.

[9] White, M., Vendome, C., Linares-Vásquez, M., & Poshyvanyk, D. (2016). Toward deep learning software
repositories. Proceedings of the 12th Working Conference on Mining Software Repositories (MSR '15), 334-345.

[10] Xu, F., Chen, L., & Liang, X. (2021). A machine learning-based approach for improving software quality by
automated refactoring. Journal of Software: Evolution and Process, 33(6), e2357.

[11] Zhai, S., Gu, T., Ke, Q., Xu, X., & Sun, H. (2020). Towards improving software maintainability with AI-driven
automated refactoring. IEEE Transactions on Software Engineering. Advanced online publication.

[12] STEM fields. International Journal of All Research Education and Scientific Methods, 11(08), 2090-2100.

[13] Engineering and Technology Research, 9(1), 60-65.

[14] Rahman, M. A. (2024). Enhancing Reliability in Shell and Tube Heat Exchangers: Establishing Plugging Criteria
for Tube Wall Loss and Estimating Remaining Useful Life. Journal of Failure Analysis and Prevention, 1-13.

[15] Murali, S. L. ADVANCED RRAM AND FUTURE OF MEMORY.

[16] Chen, Y., & Li, C. (2017, November). Gm-net: Learning features with more efficiency. In 2017 4th IAPR Asian
Conference on Pattern Recognition (ACPR) (pp. 382-387). IEEE.

[17] Elemam, S. M., & Saide, A. (2023). A Critical Perspective on Education Across Cultural Differences. Research in
Education and Rehabilitation, 6(2), 166-174.

[18] Rout, L., Chen, Y., Kumar, A., Caramanis, C., Shakkottai, S., & Chu, W. S. (2024). Beyond first-order tweedie: Solving
inverse problems using latent diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 9472-9481).

World Journal of Advanced Engineering Technology and Sciences, 2024, 13(01), 672–681

681

[19] Thakur, D. & IRE Journals. (2020). Optimizing Query Performance in Distributed Databases Using Machine
Learning Techniques: A Comprehensive Analysis and Implementation. In IRE Journals (Vol. 3, Issue 12, pp. 266–
267) [Journal-article]. https://www.irejournals.com/formatedpaper/1702344.pdf

[20] Krishna, K. (2020). Towards Autonomous AI: Unifying Reinforcement Learning, Generative Models, and
Explainable AI for Next-Generation Systems. Journal of Emerging Technologies and Innovative Research, 7(4),
60–61. https://www.jetir.org/papers/JETIR2004643.pdf

[21] Murthy, N. P. (2020). Optimizing cloud resource allocation using advanced AI techniques: A comparative study
of reinforcement learning and genetic algorithms in multi-cloud environments. World Journal of Advanced
Research and Reviews, 7(2), 359–369. https://doi.org/10.30574/wjarr.2020.07.2.0261

[22] Murthy, P. & Independent Researcher. (2021). AI-Powered Predictive Scaling in Cloud Computing: Enhancing
Efficiency through Real-Time Workload Forecasting. In IRE Journals (Vol. 5, Issue 4, pp. 143–144) [Journal-
article]. https://www.irejournals.com/formatedpaper/1702943.pdf

[23] Mehra, N. A. (2021). Uncertainty quantification in deep neural networks: Techniques and applications in
autonomous decision-making systems. World Journal of Advanced Research and Reviews, 11(3), 482–490.
https://doi.org/10.30574/wjarr.2021.11.3.0421

[24] Mehra, A. D. (2020). UNIFYING ADVERSARIAL ROBUSTNESS AND INTERPRETABILITY IN DEEP NEURAL
NETWORKS: A COMPREHENSIVE FRAMEWORK FOR EXPLAINABLE AND SECURE MACHINE LEARNING
MODELS. International Research Journal of Modernization in Engineering Technology and Science, 2.

[25] Krishna, K. (2022). Optimizing Query Performance In Distributed Nosql Databases Through Adaptive Indexing
And Data Portioning Techniques. In International Journal of Creative Research Thoughts (IJCRT), International
Journal of Creative Research Thoughts (IJCRT) (Vol. 10, Issue 8) [Journal-article].
https://ijcrt.org/papers/IJCRT2208596.pdf

[26] Krishna, K., & Thakur, D. (2021). Automated Machine Learning (AutoML) for Real-Time Data Streams: Challenges
and Innovations in Online Learning Algorithms. In Journal of Emerging Technologies and Innovative Research
(JETIR), Journal of Emerging Technologies and Innovative Research (JETIR) (Vol. 8, Issue 12) [Journal-article].
http://www.jetir.org/papers/JETIR2112595.pdf

[27] Murthy, P., Thakur, D., & Independent Researcher. (2022). Cross-Layer Optimization Techniques for Enhancing
Consistency and Performance in Distributed NoSQL Database. International Journal of Enhanced Research in
Management & Computer Applications, 35. https://erpublications.com/uploaded_files/download/pranav-
murthy-dheerender-thakur_fISZy.pdf

[28] Murthy, P., & Mehra, A. (2021). Exploring Neuromorphic Computing for Ultra-Low Latency Transaction
Processing in Edge Database Architectures. Journal of Emerging Technologies and Innovative Research, 8(1), 25–
26. https://www.jetir.org/papers/JETIR2101347.pdf

[29] Mehra, A. (2024). HYBRID AI MODELS: INTEGRATING SYMBOLIC REASONING WITH DEEP LEARNING FOR
COMPLEX DECISION-MAKING. In Journal of Emerging Technologies and Innovative Research (JETIR), Journal of
Emerging Technologies and Innovative Research (JETIR) (Vol. 11, Issue 8, pp. f693–f695) [Journal-article].
https://www.jetir.org/papers/JETIR2408685.pdf

[30] Thakur, D. & IJARESM Publication. (2021). Federated Learning and Privacy-Preserving AI: Challenges and
Solutions in Distributed Machine Learning [Journal-article]. International Journal of All Research Education and
Scientific Methods (IJARESM), 9(6), 3763–3764.
https://www.ijaresm.com/uploaded_files/document_file/Dheerender_Thakurx03n.pdf

https://www.jetir.org/papers/JETIR2004643.pdf
https://doi.org/10.30574/wjarr.2020.07.2.0261
https://www.irejournals.com/formatedpaper/1702943.pdf
https://erpublications.com/uploaded_files/download/pranav-murthy-dheerender-thakur_fISZy.pdf
https://erpublications.com/uploaded_files/download/pranav-murthy-dheerender-thakur_fISZy.pdf
https://www.jetir.org/papers/JETIR2101347.pdf
https://www.jetir.org/papers/JETIR2408685.pdf

